LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

FOURTH SEMESTER - APRIL 2015

CH 4504/CH 4502 - ELECTROCHEMISTRY

Date: 16/04/2015	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00		

$\underline{PART - A}$

Answer **ALL** questions:

 $(10 \times 2 = 20 \text{ marks})$

- 1. What is electromotive series?
- 2. What is SHE?
- 3. Calculate the ionic strength of 0.1M NaCl solution.
- 4. What are chemical cells? Give an example.
- 5. State Faraday's first law of electrolysis.
- 6. What is Van't Hoff factor?
- 7. Define equivalent conductance of a solution.
- 8. What is cell constant?
- 9. Define concentration polarisation.
- 10. What is diffusion current?

PART - B

Answer any **EIGHT** questions:

 $(8 \times 5 = 40 \text{ marks})$

- 11. What is meant by standard electrode potential? How could you determine the standard electrode potential of Zinc electrode?
- 12. Describe the construction and working of Weston cell.
- 13. A zinc electrode is placed in 0.1 M solution of zinc sulphate at 25° C. If the degree of dissociation of salt at this concentration is found to be 0.95, calculate the electrode potential of the electrode at 25° C. Given that $E_{Zn}^{0}^{2+}$, $z_{n} = -0.76$ volt.
- 14. Explain the principle involved in the redox titration by potentiometry.
- 15. Derive Nernst equation for electrochemical reactions.
- 16. Explain the principle of Lead storage battery.
- 17. Discuss the variation of specific conductance with concentrations of solution.
- 18. The speed ratio of silver and nitrate ions in a solution of silver nitrate electrolysed between silver electrodes is 0.916. Find the transport number of the two ions.
- 19. How will you determine the solubility product of AgCl by conductivity measurements?
- 20. State Kohlraush's law and give its applications.
- 21. Explain how the electrolytic separations of metals are carried out.
- 22. Explain electrochemical theory of corrosion.

$\underline{PART - C}$

	Answer any FOUR questions.	$(4 \times 10 = 40 \text{ marks})$
23.	Explain the construction and working of i) Redox electrode ii) Calomel electrode.	(10)
24.	Explain any four applications of EMF.	(10)
25.	How is the p ^H of a solution determined using glass electrode? Explain the construction and principle of glass electrode.	(4+6)
26.	What are concentration cells? Derive an expression for the EMF of a concentration cell with transference.	(10)
27.	i) Discuss the Arrhenius theory of electrolytic dissociation. Give its limitations.	(5)
	ii) A solution of $Ni(NO_3)_2$ is electrolysed between platinum electrodes using current of 5.0 ampere for 30 minutes. What weight of Ni will be produced at the cathode?	(5)
28.	 i) Discuss Debye – Huckel theory of strong electrolyte. ii) Explain hydrogen over voltage. 	(5) (5)

\$\$\$\$\$\$\$